Home | Algorithms | Commercialization | Data Science | Information Theories | Quantum Theories | Lab | Linear Algebra |
<< Eigenvalues | Kronecker Product >> |
$\require{cancel} \newcommand{\Ket}[1]{\left|{#1}\right\rangle} \newcommand{\Bra}[1]{\left\langle{#1}\right|} \newcommand{\Braket}[1]{\left\langle{#1}\right\rangle} \newcommand{\Rsr}[1]{\frac{1}{\sqrt{#1}}} \newcommand{\RSR}[1]{1/\sqrt{#1}} \newcommand{\Verti}{\rvert} \newcommand{\HAT}[1]{\hat{\,#1~}} \DeclareMathOperator{\Tr}{Tr}$
First created in July 2018
This page is about constructing Hilbert Spaces of higher dimensions from lower ones.
In this context, let the basis of $V$ be $A=\{\Ket{\alpha_1},\Ket{\alpha_2},\ldots,\Ket{\alpha_n}\}$ and the basis of $W$ be $B=\{\Ket{\beta_1},\Ket{\beta_2},\ldots,\Ket{\beta_m}\}$.
$V\oplus W$ denotes the direct sum of two vector spaces $V$ and $W$.
When $U=V\oplus W$, we say that $V\oplus W$ is a decomposition of $U$.
The basis of $V\oplus W$ will be $A\cup B$, and
$\dim(V\oplus W)=\dim(V)+\dim(W)$.
If $V$ and $W$ are inner product spaces,
$(\Bra{v_2}\oplus\Bra{w_2})~~(\Ket{v_1}\oplus\Ket{w_1})=\Braket{v_2\Verti v_1}+\Braket{w_2\Verti w_1}$.
$\quad\Big(?\Braket{v\Verti w}=0\text{ for all }v\in V\text{ and }w\in W\Big)$.
$V\otimes W$ denotes the Kronecker product of two vector spaces $V$ and $W$.
The basis of $V\otimes W$ will be $\left\{\Ket{\alpha_i}\otimes\Ket{\beta_j}~:~i=1,2,\ldots,n;j=1,2,\ldots,m\right\}$, and
$\dim(V\otimes W)=\dim(V)\times\dim(W).$
Ref: Kronecker product
$(A\otimes B)~(C\otimes D)=(AC)\otimes(BD).~~~~ (A\otimes B)^{-1}=(A^{-1}\otimes B^{-1}).~~~~ (A\otimes B)^\dagger=(A^\dagger\otimes B^\dagger).$
$\Ket{vw}:=\Ket v\otimes\Ket w.~~~ \Bra{wv}:=\Bra w\otimes\Bra v.$
$\Ket{vw}^\dagger=\Bra{vw}.$
Example:
Let $\Ket v=[1,2i,3]^T$, and $\Ket w=[4i,5]^T,~~ \Ket{vw}=[4i,5,-8,10i,12i,15]^T,~~ \Ket{vw}^\dagger=[-4i,5,-8,-10i,-12i,15] .$
$\Bra{wv} =\Bra{w}\otimes\Bra{v} =[-4i,5]\otimes[1,-2i,3] =[-4i,-8,-12i,5,-10i,15] \ne\Ket{vw}^\dagger .$
$\Bra{vw} =\Bra{v}\otimes\Bra{w} =[1,-2i,3]\otimes[-4i,5] =[-4i,5,-8,-10i,-12i,15] =\Ket{vw}^\dagger .$
$\Ket{v_2w_2}\Bra{v_1w_1} =(\Ket{v_2}\otimes\Ket{w_2})~(\Bra{v_1}\otimes\Bra{w_1}) =\Ket{v_2}\Bra{v_1}\otimes\Ket{w_2}\Bra{w_1}$.
$\Braket{v_1w_1\Verti v_2w_2} =\Bra{v_1w_1}\Ket{v_2w_2} =(\Bra{v_1}\otimes\Bra{w_1})~~(\Ket{v_2}\otimes\Ket{w_2}) =\Braket{v_1\Verti v_2}\Braket{w_1\Verti w_2}.$
$\displaystyle (\Ket{v_1}+\Ket{v_2})\otimes\Ket{w}=\Ket{v_1}\otimes\Ket{w}+\Ket{v_2}\otimes\Ket{w}.\\ \Ket{v}\otimes(\Ket{w_1}+\Ket{w_2})=\Ket{v}\otimes\Ket{w_1}+\Ket{v}\otimes\Ket{w_2}.\\ (a\Ket{v})\otimes\Ket{w}=\Ket{v}\otimes(a\Ket{w})=a(\Ket{v}\otimes\Ket{w}) .$
$\Ket v\Bra w=\Ket v\otimes\Bra w.$
If the bases of $V$ and $W$ are orthonormal, so will that of $V\otimes W$.
Example: Let basis of $V$ be $\{\Ket0,\Ket1\}$ and of $W$ be $\{\Ket{00},\Ket{01},\Ket{10},\Ket{11}\}$.
$\Ket{v}=a_0\Ket0+a_1\Ket1$ and $\Ket{w}=b_{00}\Ket{00}+b_{01}\Ket{01}+b_{10}\Ket{10}+b_{11}\Ket{11}$.
$\Ket{v}\otimes\Ket{w}=
\left(a_0 b_{00}\Ket{000}+a_0 b_{01}\Ket{001}+a_0 b_{10}\Ket{010}+a_0 b_{11}\Ket{011}\right)+
\left(a_1 b_{00}\Ket{100}+a_1 b_{01}\Ket{101}+a_1 b_{10}\Ket{110}+a_1 b_{11}\Ket{111}\right)$.
Some shorthand examples:
Notes:
The state space for an $n$-qubit system has $2^n$ dimensions.
Not all elements in $V\otimes W$ can be written as $\Ket{v}\otimes\Ket{w}$. (Those that can are sometimes written as $\Ket{v}\Ket{w}$, or even $\Ket{vw}$, omitting $\otimes$.)
If $\Ket{\psi}\in V\otimes W$ cannot be written as $\Ket{v}\otimes\Ket{w}$, we call that $\psi$ is in an entangled state.
Entanglement is basis dependent. $\Ket{\psi}$ may not be entangled (factorisable) if decomposed into a different basis.
Multiple vectors may refer to the same state due to normalisation and standardisation (relative phase). If you only consider vectors with the first (left most) non-zero coefficient being positively real (no phase), they are one-one corresponding to unique state.
<< Eigenvalues | Top | Kronecker Product >> |