Home | Algorithms | Commercialization | Data Science | Information Theories | Quantum Theories | Lab | Linear Algebra |
<< Hilbert Space Constructions | Matrix Pulled Apart >> |
$\require{cancel} \newcommand{\Ket}[1]{\left|{#1}\right\rangle} \newcommand{\Bra}[1]{\left\langle{#1}\right|} \newcommand{\Braket}[1]{\left\langle{#1}\right\rangle} \newcommand{\Rsr}[1]{\frac{1}{\sqrt{#1}}} \newcommand{\RSR}[1]{1/\sqrt{#1}} \newcommand{\Verti}{\rvert} \newcommand{\HAT}[1]{\hat{\,#1~}} \DeclareMathOperator{\Tr}{Tr}$
First created in September 2018
# Initialisation
import sys
sys.path.append('../')
from qtol import *
# Kronecker multiplication with numpy
X = np.array([[0, 1], [1, 0]])
Z = np.array([[1, 0], [0, -1]])
S = np.array([[1, 0], [0, 1j]])
IZ = np.kron(np.eye(2), Z)
ZI = np.kron(Z, np.eye(2))
IX = np.kron(np.eye(2), X)
XI = np.kron(X, np.eye(2))
print(np.kron(Z,X))
print(np.kron(Z,S))
<< Hilbert Space Constructions | Top | Matrix Pulled Apart >> |