Home | Algorithms | Commercialization | Data Science | Information Theories | Quantum Theories | Lab | Linear Algebra |
<< Matrix Pulled Apart | Similarity >> |
$\require{cancel} \newcommand{\Ket}[1]{\left|{#1}\right\rangle} \newcommand{\Bra}[1]{\left\langle{#1}\right|} \newcommand{\Braket}[1]{\left\langle{#1}\right\rangle} \newcommand{\Rsr}[1]{\frac{1}{\sqrt{#1}}} \newcommand{\RSR}[1]{1/\sqrt{#1}} \newcommand{\Verti}{\rvert} \newcommand{\HAT}[1]{\hat{\,#1~}} \DeclareMathOperator{\Tr}{Tr}$
First created in March 2019
In this context, the type of matrices is implied in the symbol:
$N$ is normal matrix ($NN^\dagger=N^\dagger N$.)
$U$ is unitary matrix ($U^\dagger=U^{-1}$, so $UU^\dagger=U^\dagger U=I$ and therefore also normal.)
$H$ is Hermitian matrix ($H^\dagger=H$, so $HH^\dagger=H^\dagger H$ and therefore also normal.)
$P$ is invertible matrix (full rank with independent column vectors.)
$D$ is invertible diagonal matrix (i.e. diagonal elements are non-zero.)
$D_0$ is general diagonal matrix (zero diagonal elements allowed.)
$\Lambda$ is invertible diagonal matrix with (non-zero) eigenvalues of the subject matrix on its diagonal ($\Lambda_{ii}=\lambda_i$). $\Lambda_0$ allows zero eigenvalues.
Both $\Lambda$ and $\Lambda_0$ allow degeneracy (nondistinct eigenvalues).
$M$ is idempotent matrix ($M^2=M~\Rightarrow M^n=M$)
$S$ is involutory matrix ($S=S^{-1}$, i.e. $\sqrt{I}$)
When we use the lowercase symbol, it means a column vector of the corresponding matrix.
e.g. $\Ket{p_i}$ is the $i^\mathrm{th}$ column vector of $P$.
That is $\Bra{p_i}$ is the $i^\mathrm{th}$ row of $P^\dagger$.
When we say basis $B$, it means a basis formed by $B$'s column vectors.
When we say $A\in\{X\}$, it means $A$ belongs to class of $X$ as implied by the simbol. e.g. $A\in\{N\}$ means $A$ is normal.
When the converse is true, i.e. the result is sufficient for the condition, we write (suf.)
Here matrix $A$ is said to be:
Diagonalisable: $A=PDP^{-1}$
Unitarily diagonalisable: $A=UDU^{-1}$
Unit-length: $\lvert z\rvert=1,~z\in\mathbb{C}$
isometry or length-preserving: $\big\lVert A\Ket\psi\big\rVert=\big\lVert\Ket\psi\big\rVert$
$UU^\dagger=U^\dagger U=I.$
$\{\Ket{u_i}\}$ orthonormal (suf.)
$\{\Bra{u_i}\}$ orthonormal (suf.)
Isometry (suf.)
Eigenvalues unit-length
Normal - $U\in\{N\}.$
$NN^\dagger=N^\dagger N.$
Unitarily diagonalisable
Eigenvectors orthogonal
$\sum_{i,j}\lvert a_{ij}\rvert^2=\sum_k\lvert\lambda_k\rvert^2.$
Properties | $N$ | $U$ | $H$ |
---|---|---|---|
Is also | $N$ | $N$ | |
Diagonisable | ?Y | ?Y | ?Y |
Unitarily Diagonisable | ?Y | ?Y | |
Invertible | |||
Columns of unit-length | |||
Columns orthogonal | |||
Rows of unit-length | |||
Rows orthogonal | |||
Isometry (preserve length) | |||
Eigenvectors orthogonal | |||
Eigenvalues norm 1 | |||
Eigenvalues real |
<< Matrix Pulled Apart | Top | Similarity >> |