Home | Algorithms | Commercialization | Data Science | Information Theories | Quantum Theories | Lab | Linear Algebra |
<< Superoperator Examples |
$\require{cancel} \newcommand{\Ket}[1]{\left|{#1}\right\rangle} \newcommand{\Bra}[1]{\left\langle{#1}\right|} \newcommand{\Braket}[1]{\left\langle{#1}\right\rangle} \newcommand{\Rsr}[1]{\frac{1}{\sqrt{#1}}} \newcommand{\RSR}[1]{1/\sqrt{#1}} \newcommand{\Verti}{\rvert} \newcommand{\HAT}[1]{\hat{\,#1~}} \DeclareMathOperator{\Tr}{Tr}$
First created in February 2019
Trace is the sum of the diagonal of a square matrix. Trace is useful in the discription of mixed states as $\Tr(\rho)=1$, and $\Tr(\rho^2)=1$ for a pure state and $\Tr(\rho^2)<1$ for mixed states.
Let $A=[a_{ij}],~\text{where }i,j=1,2,\ldots,n.~~\Tr(A)=\sum_i a_{ii}~.$
Linear mapping:
$\Tr(A+B)=\Tr(A)+\Tr(B),$
$\Tr(cA)=c\Tr(A)~,~~$where $c$ is a scaler.
$\Tr(A)=\Tr(A^T).$
$\Tr(A^TB)=\Tr(AB^T)=\sum_{i,j}[a_{ij}b_{ij}].~~ \text{Proof: }\Tr(A^TB) =\Tr(\left[\sum_{k}a_{ki}b_{kj}\right]) =\sum_i\left[\sum_{k}a_{ki}b_{ki}\right].~~ \text{Symmetrically, }\Tr(AB^T) =\sum_i\left[\sum_{k}a_{ik}b_{ik}\right] .$
$\Tr(AB)=\Tr(BA).~~ \text{Proof: }\Tr(AB) =\Tr\left(\sum_ka_{ik}b_{kj}\right) =\sum_i\sum_k a_{ik}b_{ki} =\sum_k\sum_i b_{ki}a_{ik} =\Tr(BA) .$
$\because\Tr(ABC)=\Tr(A(BC))=\Tr((BC)A)=\Tr(BCA),\\ \therefore\text{cyclic permutations yield equal trace:} \Tr(ABC)=\Tr(BCA)=\Tr(CAB).$
$\Tr(A\otimes B)=\Tr(A)\Tr(B).$
Proof: $A\otimes B =\left(\sum_{i,j}a_{ij}\Ket i\Bra j\right)\otimes \left(\sum_{p,q}a_{pq}\Ket p\Bra q\right) =\sum_{i,j,p,q}a_{ij}b_{pq}\Ket{ip}\Bra{jq}.\\ \Tr(A\otimes B) =\Tr\left(\sum_{i,j,p,q}a_{ij}b_{pq}\Ket{ip}\Bra{jq}\right) =\sum_{i,p}a_{ii}b_{pp} =\left(\sum_ia_{ii}\right)\cdot\left(\sum_pb_{pp}\right) =\Tr(A)\Tr(B).$
Similar matrics have the same trace: $\Tr(P^{-1}AP)=\Tr(P^{-1}(AP))=\Tr((AP)P^{-1})=\Tr(A).$
With reference to Similarity, the fact that all matrices diagonalisable into the same set of diagonal matrices $D$ (with different permutation of the same set of eigenvalues on their diagonal) form a class of mutually similar matrices, it is not surprising that similar matrices have the same eigenvalues.
If $A=P^{-1}DP$ with $D$ having $\lambda_r$, the eigenvalues of $A$, on its diagonal, $~~A^2=P^{-1}DP~P^{-1}DP=P^{-1}D^2P~$ will have eigenvalues $\lambda_r^2$.
Eigenvalues are zeros of $\det(\lambda I-A).$ Let $p(\lambda)=\det(\lambda I-A) =\prod_{k=1}^n(\lambda-\lambda_k) ,$ where $\lambda_k$ is an eigenvalue of $A$.
We can expand $p(\lambda) =\sum_{m=0}^nc_m\lambda^m .$ By observation, one can tell that $c_0=\prod_{k=1}^n(-\lambda_k)=(-1)^n\prod_{k=1}^n\lambda_k.$
At the same time, $c_0=p(0)=\det(-A)=(-1)^n\det(A).$ So we again proved that $\det(A)=\prod_{k=1}^n\lambda_k.$
But the most interesting part is $c_{n-1}=-\sum_{k=1}^n\lambda_k.$
The definition of determinant is $\large\sum\prod_i(-1)^rA_{ij_i}$ for all permutation of $j_i$ with $r=0$ for even permutation and 1 for odd.
In $\lambda I-A,~A_{ii}=\lambda-a_{ii}$. All other terms would have at most $n-2$ factors on the diagonal with $\lambda$.
So $p(\lambda)=\prod_{k=1}^n(\lambda-a_{kk})+q(\lambda),~$ where $q(\lambda)$ is of degree $n-2$.
That means the $\lambda^{n-1}$ term comes from the product, and therefore $c_{n-1}=-\sum_{k=1}^na_{kk}.$
Comparing with the previous finding, $\boxed{\Tr(A)=\sum_{k=1}^na_{kk}=\sum_{k=1}^n\lambda_k~}.$
Please note that this does not mean that eigenvalues are all on the diagonal. It only means that their sum is the same as the trace.
If the non-diagonal elements change, the eigenvalues will change, but their sum remains constant for as long as the diagonal does not change (or change with their sum being invariant).
Idempotent matrices ($A^2=A$) is singular (not full rank and therefore not invertible) except for $I$.
Proof: If idempotent matrix $A$ is invertible, $A=IA=A^{-1}AA=A^{-1}A=I.$
Corollary: For $A$ (idempotent or not) with an eigenvalue $\lambda$ and eigenvector $\mathbf v,~ \lambda^2$ is an eigenvalue of $A^2$ with the same eigenvector.
Proof: $A\mathbf v=\lambda v.~~A^2\mathbf v=A\lambda\mathbf v=\lambda A\mathbf v=\lambda^2\mathbf v.$
To generalise, $\lambda^m$ is an eigenvalue of $A^m$. Therefore, $\displaystyle\Tr(A^m)=\sum_k\lambda_k^m.$
For an idempotent matrix, $A^2=A$ so each of its eigenvalue satisfies $\lambda^2=\lambda$, and therefore can only be $0$ or $1$.
From Similarity, we can find a matrix $D$ similar to $A$, but with all its eigenvalues on the diagonal and all other elements zero.
Given that the eigenvalues of $D$ are either $0$ or $1$ as well, the rank of $D$ is the sum of its eigenvalues. As ?($A$ has the same rank as $D$) and share the same set of eigenvalues, $\Tr(A)$ (the sum of its eigenvalues) is its rank.
Note: Eigenvalue can be zero. The multiplicity of the zero eigenvalue is nullity.
WORKING
For $\displaystyle e^A=\sum_{m=0}^\infty{1\over m!}A^m,~ \Tr(e^A) =\sum_{m=0}^\infty{1\over m!}\Tr(A^m) =\sum_{m=0}^\infty{1\over m!}\sum_k\lambda_k^m =\sum_k\sum_{m=0}^\infty{1\over m!}\lambda_k^m =\sum_ke^{\lambda_k} .$
$\det(e^A)=e^{\Tr(A)}.$
<< Superoperator Examples | Top |