Home | Algorithms | Commercialization | Data Science | Information Theories | Quantum Theories | Lab | Linear Algebra |
<< Rotation - Bloch Sphere | Rotation about Pauli Axes >> |
$\require{cancel} \newcommand{\Ket}[1]{\left|{#1}\right\rangle} \newcommand{\Bra}[1]{\left\langle{#1}\right|} \newcommand{\Braket}[1]{\left\langle{#1}\right\rangle} \newcommand{\Rsr}[1]{\frac{1}{\sqrt{#1}}} \newcommand{\RSR}[1]{1/\sqrt{#1}} \newcommand{\Verti}{\rvert} \newcommand{\HAT}[1]{\hat{\,#1~}} \DeclareMathOperator{\Tr}{Tr}$
First created in September 2018
Matrix exponential is a big topic and here only the aspect useful for quantum computing are discussed.
Definition: $\displaystyle e^A=\sum_{k=0}^\infty{1\over k!}A^k$
$e^\mathbb{0}=I,~~~$as the only non-trivial term is $I$ (when $k=0$) and all other terms become zero.
$e^{\alpha I}=\sum_{k=0}^\infty{1\over k!}(\alpha I)^k=e^\alpha I.$
$e^{A^T}=\left(e^A\right)^T,~~~$ as $\sum_{k=0}^\infty{1\over k!}\left(A^T\right)^k=\left(\sum_{k=0}^\infty{1\over k!}A^k\right)^T.$
$e^{A^\dagger}=\left(e^A\right)^\dagger,~~~$ as $\sum_{k=0}^\infty{1\over k!}\left(A^\dagger\right)^k=\left(\sum_{k=0}^\infty{1\over k!}A^k\right)^\dagger.$
$e^{BAB^{-1}}=B~e^A~B^{-1},~~~$ as $\sum_{k=0}^\infty{1\over k!}(BAB^{-1})^k=B\left(\sum_{k=0}^\infty{1\over k!}A^k\right)B^{-1}.$
$Ae^{\alpha A}=e^{\alpha A}A.~~~$ i.e. $[A,e^{\alpha A}]=0.$
If $AB=BA,~~e^Ae^B=e^{A+B}.$
Proof: Since $A$ and $B$ commute, $(A+B)^k=\left(\sum_{r=0}^k\frac{k!}{(k-r)!r!}A^{k-r}B^r\right).$
$\displaystyle e^{A+B} =\sum_{k=0}^\infty{1\over k!}(A+B)^k =\sum_{k=0}^\infty{1\over k!}\left(\sum_{r=0}^k\frac{k!}{(k-r)!r!}A^{k-r}B^r\right) =\sum_{k=0}^\infty\left(\sum_{r=0}^k\frac{A^{k-r}}{(k-r)!}\cdot\frac{B^r}{r!}\right)\\ \displaystyle =\sum_{r=0}^\infty\left(\sum_{k=r}^\infty\frac{A^{k-r}}{(k-r)!}\cdot\frac{B^r}{r!}\right) =\sum_{r=0}^\infty\frac{B^r}{r!}\left(\sum_{k=r}^\infty\frac{A^{k-r}}{(k-r)!}\right) =\sum_{r=0}^\infty\frac{B^r}{r!}\left(\sum_{k=0}^\infty\frac{A^k}{k!}\right) =e^Ae^B.$
$e^{i\alpha A}e^{i\beta A}=e^{i(\alpha+\beta)A}~,~~$where $\alpha,\beta\in\mathbb{R}.$
Proof: $~~~\because~[i\alpha A,i\beta A]=0~,~~ \therefore e^{i\alpha A}e^{i\beta A}=e^{i\alpha A+i\beta A}=e^{i(\alpha+\beta)A}.$
If $A$ is skew-Hermitian, i.e. $A^\dagger=-A,$ then $e^A$ is unitary.
Proof: $e^A(e^A)^\dagger=e^Ae^{A^\dagger}=e^{A+A^\dagger}=e^{A-A}=I.$
If $A$ is Hermitian, i.e. $A^\dagger=A,$ then $e^{i\alpha A}$ is unitary for any $\alpha\in\mathbb{R}$.
Proof: $e^{i\alpha A}(e^{i\alpha A})^\dagger=e^{i\alpha A}e^{(i\alpha A)^\dagger}=e^{i\alpha A-i\alpha A}=I.$
For diagonal matrix $D= \begin{bmatrix} d_1 & 0 & \cdots & 0\\ 0 & d_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & d_n \end{bmatrix} ,~~ e^D= \begin{bmatrix} e^{d_1} & 0 & \cdots & 0\\ 0 & e^{d_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & e^{d_n} \end{bmatrix} .$
$\displaystyle\frac{d}{dt}e^{tA} =\frac{d}{dt}I+\sum_{k=1}^\infty{1\over k!}A^k\frac{d}{dt}t^k =\sum_{k=1}^\infty{1\over k!}A^kkt^{k-1} =A\sum_{k=1}^\infty{1\over(k-1)!}A^{k-1}t^{k-1} =Ae^{tA} =e^{tA}A .$
When $\displaystyle A^2=I,~~e^{i\theta A} =I\cos\theta+iA\sin\theta,~~$ where $\theta\in\mathbb{R}.$
Proof: $\displaystyle e^{i\theta A} =\sum_{k=0}^\infty{1\over (2k)!}(i\theta~A)^{2k}+\sum_{k=0}^\infty{1\over (2k+1)!}(i\theta~A)^{2k+1}\\ =I\sum_{k=0}^\infty{1\over (2k)!}(-1)^k\theta^{2k}+iA\sum_{k=0}^\infty{1\over (2k+1)!}(-1)^k\theta^{2k+1} =I\cos\theta+iA\sin\theta .$
When $P^2=P$ for $n\in\mathbb{N}$ and $n>1~,~~e^P=I+(e-1)P~~~$ (an idempotent projector).
Proof: $\displaystyle \because P^2=P,~~\therefore P^n=P,~~$and$~~ e^P =\sum_{k=0}^\infty{1\over k!}P^k =I+\sum_{k=1}^\infty{1\over k!}P =I+\left(\sum_{k=0}^\infty{1\over k!}-1\right)P =I+\left(e-1\right)P .$
Generator $G\equiv\Ket b\Bra a-\Ket{a}\Bra{b}~,~~$where $\Ket a$ and $\Ket b$ are perpendicular unit vectors. i.e. $\Braket{a\Verti a}=1, \Braket{b\Verti b}=1,~$and$~\Braket{a\Verti b}=0.$
Projector $P\equiv\Ket{a}\Bra{a}+\Ket{b}\Bra{b}=-G^2~.$
We have $P^2=P$ and therefore $P^n=P,~~$and by observation$~~PG=GP=G.$
Operator to rotate angle $\theta$ from $\Ket{a}$ to $\Ket{b}$ (about the origin) is $\varpi(\theta)=e^{G\theta}.$
For $n\ge 1~,~~G^{2n}=(-1)^nP~,~~$and $G^{2n+1}=(-1)^nPG=(-1)^nG.$
$\varpi(\theta)=e^{G\theta}\\ =\sum_{k=0}^\infty{1\over k!}(G\theta)^k\\ =I+\sum_{k=1}^\infty{1\over(2k)!}(G\theta)^{2k}+G\theta+\sum_{k=1}^\infty{1\over(2k+1)!}(G\theta)^{2k+1}\\ =I+P\sum_{k=1}^\infty{\theta^{2k}\over(2k)!}(-1)^k+G\theta+\sum_{k=1}^\infty{\theta^{2k+1}\over(2k+1)!}(-1)^kPG\\ =I-P+P\sum_{k=0}^\infty{\theta^{2k}\over(2k)!}(-1)^k+G\sum_{k=0}^\infty{\theta^{2k+1}\over(2k+1)!}(-1)^k\\ =I-P+P\cos\theta+G\sin\theta .$
An observation: $P$ and $G$ is analogous to 1 and $i$ in many ways: $P=-G^2$ to $1=-i^2$, $P^2=P$ to $1^2=1$, $PG=GP=G$ to $1\times i=i\times 1=i$.
So $\varpi(\theta)=e^{G\theta}=I-P+P\cos\theta+G\sin\theta$ is like $e^{i\theta}=\cos\theta+i\sin\theta$, except that we have an extra $I-P$, which is like $1-1=0$ (sort of).
Note: In the discussion of Bloch Sphere Orthonormality, any two states at the two ends of a diameter of the Bloch Sphere are orthonomal. This is not generally true for the Hilbert Space presentation above. For example, $+\Ket1$ and $+i\Ket1$ are not orthonormal.
$\varpi_x(\theta)$ rotation from $\Ket a=\Ket0$ to $\Ket b=-i\Ket1.$ Note $\Braket{a\Verti b}=\Braket{0\Verti 1}i=0.$
From the the Bloch Sphere representation, $\Ket0$ to $-i\Ket1$ is a $\pi$ rotation about $X$.
$G =\Ket b\Bra a-\Ket a\Bra b =-i\Ket1\Bra0-i\Ket0\Bra1 =\begin{bmatrix} 0 & -i\\ -i & 0 \end{bmatrix} .$
$P =\Ket a\Bra a+\Ket b\Bra b =\Ket0\Bra0+\Ket1\Bra1 =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} .$
$\varpi_x(\theta)=I-P+P\cos\theta+G\sin\theta =\begin{bmatrix} \cos\theta & -i\sin\theta\\ -i\sin\theta & \cos\theta \end{bmatrix} .$
Exponent $~e^{-i\theta X} =I\cos\theta-iX\sin\theta =\begin{bmatrix} \cos\theta & 0\\ 0 & \cos\theta \end{bmatrix} -i\begin{bmatrix} 0 & \sin\theta\\ \sin\theta & 0 \end{bmatrix} =\begin{bmatrix} \cos\theta & -i\sin\theta\\ -i\sin\theta & \cos\theta \end{bmatrix} .$
$\boxed{\varpi_x(\theta) =e^{-i\theta X} =\begin{bmatrix} \cos\theta & -i\sin\theta\\ -i\sin\theta & \cos\theta \end{bmatrix} }$ in the vector space.
Bloch Sphere $X$-axis rotation is also twice as fast as with orthonormal basis: $R_x(\theta)=\varpi_x(\theta/2).$
$\boxed{R_x(\theta) =e^{-i{\theta\over 2}X} =\begin{bmatrix} \cos{\theta\over 2} & -i\sin{\theta\over 2}\\ -i\sin{\theta\over 2} & \cos{\theta\over 2} \end{bmatrix} }$ on the Bloch Sphere.
Rotation by $\pi/2$ about the $X$-axis is $R_x(\pi/2)=\varpi_x(\pi/4) =\Rsr2\begin{bmatrix} 1 & -i\\ -i & 1 \end{bmatrix} .$
This sends $\Ket0$ to $\Rsr2(\Ket0-i\Ket1)~~$ and $~~\Ket1$ to $\Rsr2(-i\Ket0+\Ket1)\sim\Rsr2(\Ket0+i\Ket1).$
$\varpi_y(\theta)$ rotates from $\Ket a=\Ket0$ to $\Ket b=\Ket1.$ Note $\Braket{a\Verti b}=\Braket{0\Verti 1}=0.$
From the the Bloch Sphere representation, $\Ket0$ to $\Ket1$ is a $\pi$ rotation about $Y$.
$G =\Ket b\Bra a-\Ket a\Bra b =\Ket1\Bra0-\Ket0\Bra1 =\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} .$
$P =\Ket a\Bra a+\Ket b\Bra b =\Ket0\Bra0+\Ket1\Bra1 =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} .$
$\varpi_y(\theta)=I-P+P\cos\theta+G\sin\theta =\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} .$
Exponent $~e^{-i\theta Y} =I\cos\theta-iY\sin\theta =\begin{bmatrix} \cos\theta & 0\\ 0 & \cos\theta \end{bmatrix} -i\begin{bmatrix} 0 & -i\sin\theta\\ i\sin\theta & 0 \end{bmatrix} =\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} .$
$\boxed{\varpi_y(\theta) =e^{-i\theta Y} =\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} }$ in the vector space.
Bloch Sphere $Y$-axis rotation is twice as fast as with orthonormal basis: $R_y(\theta)=\varpi_y(\theta/2).$
$\boxed{R_y(\theta) =e^{-i{\theta\over 2}Y} =\begin{bmatrix} \cos{\theta\over 2} & -\sin{\theta\over 2}\\ \sin{\theta\over 2} & \cos{\theta\over 2} \end{bmatrix} }$ on the Bloch Sphere.
Rotation by $\pi/2$ about the $Y$-axis is $R_y(\pi/2)=\varpi_y(\pi/4) =\Rsr2\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} .$
This sends $\Ket0$ to $\Rsr2(\Ket0+\Ket1)~~$ and $~~\Ket1$ to $\Rsr2(-\Ket0+\Ket1)\sim\Rsr2(\Ket0-\Ket1).$
Note: $R_y(\pi/2)$ is not a Hadamard operation, as it is not self-inverse (i.e. $(R_y(\pi/2))^2=R_y(\pi)\ne I.$)
$\varpi_z(\theta)$ rotates from $\Ket a=\Rsr2(\Ket0+i\Ket1)$ to $\Ket b=\Rsr2(\Ket0-i\Ket1).$ Note $\Braket{a\Verti b} =\Rsr2(\Bra0-i\Bra1)\Rsr2(\Ket0-i\Ket1) ={1\over 2}(\Braket{0\Verti 0}-\Braket{1\Verti 1})=0.$
From the the Bloch Sphere representation, $\Rsr2(\Ket0+i\Ket1)$ to $\Rsr2(\Ket0-i\Ket1)$ is not an obvious $\pi$ rotation about $Z$. A $\pi$ rotation about $X$ can achieve the same result. We will discuss this apparant confusion by rotating a $\pi/2$ on Bloch Sphere at the end of this section.
$G =\Ket b\Bra a-\Ket a\Bra b =\Rsr2(\Ket0-i\Ket1)\Rsr2(\Bra0-i\Bra1)-\Rsr2(\Ket0+i\Ket1)\Rsr2(\Bra0+i\Bra1)\\ ={1\over 2}(\Ket0\Bra0-i\Ket0\Bra1-i\Ket1\Bra0-\Ket1\Bra1) -{1\over 2}(\Ket0\Bra0+i\Ket0\Bra1+i\Ket1\Bra0-\Ket1\Bra1) =\begin{bmatrix} 0 & -i\\ -i & 0 \end{bmatrix} .$
$P =\Ket a\Bra a+\Ket b\Bra b =\Rsr2(\Ket0+i\Ket1)\Rsr2(\Bra0-i\Bra1)+\Rsr2(\Ket0-i\Ket1)\Rsr2(\Bra0+i\Bra1)\\ ={1\over 2}(\Ket0\Bra0-i\Ket0\Bra1+i\Ket1\Bra0+\Ket1\Bra1) +{1\over 2}(\Ket0\Bra0+i\Ket0\Bra1-i\Ket1\Bra0+\Ket1\Bra1) =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} .$
$\varpi_z(\theta)=I-P+P\cos\theta+G\sin\theta =\begin{bmatrix} \cos\theta-i\sin\theta & 0\\ 0 & \cos\theta+i\sin\theta \end{bmatrix} =\begin{bmatrix} e^{-i\theta} & 0\\ 0 & e^{i\theta} \end{bmatrix} .$
Exponent $~e^{-i\theta Z} =I\cos\theta-iZ\sin\theta =\begin{bmatrix} \cos\theta & 0\\ 0 & \cos\theta \end{bmatrix} -i\begin{bmatrix} \sin\theta & 0\\ 0 & -\sin\theta \end{bmatrix} =\begin{bmatrix} \cos\theta-i\sin\theta & 0\\ 0 & \cos{\theta}+i\sin\theta \end{bmatrix} =\begin{bmatrix} e^{-i\theta} & 0\\ 0 & e^{i\theta} \end{bmatrix} .$
$\boxed{\varpi_z(\theta) =e^{-i\theta Z} =\begin{bmatrix} e^{-i\theta} & 0\\ 0 & e^{i\theta} \end{bmatrix} }$ in the vector space.
Bloch Sphere $Z$-axis rotation is twice as fast as with orthonormal basis: $R_z(\theta)=\varpi_z(\theta/2).$
$\boxed{R_z(\theta) =e^{-i{\theta\over 2}Z} =\begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix} }$ on the Bloch Sphere.
Rotation by $\pi/2$ about the $Z$-axis is $R_z(\pi/2)=\varpi_z(\pi/4) =\begin{bmatrix} e^{-i\pi/4} & 0\\ 0 & e^{i\pi/4} \end{bmatrix} \sim\begin{bmatrix} 1 & 0\\ 0 & e^{i\pi/2} \end{bmatrix} =\begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix} .$
This sends $\Rsr2(\Ket0+\Ket1)$ to $\Rsr2(\Ket0+i\Ket1)~~$ and $~~\Rsr2(\Ket0-\Ket1)$ to $\Rsr2(\Ket0-i\Ket1).$
As stated earlier, rotating from $\Rsr2(\Ket0+i\Ket1)$ to $\Rsr2(\Ket0-i\Ket1)$ can be achieved by either a $R_x(\pi)$ or $R_z(\pi)$ operation.
However, $R_x(\pi/2)\Rsr2(\Ket0+i\Ket1)$ gives you $\Ket0$, while $R_z(\pi/2)\Rsr2(\Ket0+i\Ket1)$ gives you $\Rsr2(\Ket0-\Ket1)$.
Now, if we rotate from $\Ket a=\Rsr2(\Ket0+\Ket1)$ to $\Ket b=\Rsr2(\Ket0-\Ket1)$, $\varpi'_z(\theta) =\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} ,$ as illustrated in the following.
$G =\Ket b\Bra a-\Ket a\Bra b =\Rsr2(\Ket0-\Ket1)\Rsr2(\Bra0+\Bra1)-\Rsr2(\Ket0+\Ket1)\Rsr2(\Bra0-\Bra1)\\ ={1\over 2}(\Ket0\Bra0+\Ket0\Bra1-\Ket1\Bra0-\Ket1\Bra1) -{1\over 2}(\Ket0\Bra0-\Ket0\Bra1+\Ket1\Bra0-\Ket1\Bra1) =\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} .$
$P =\Ket a\Bra a+\Ket b\Bra b =\Rsr2(\Ket0+\Ket1)\Rsr2(\Bra0+\Bra1)+\Rsr2(\Ket0-\Ket1)\Rsr2(\Bra0-\Bra1)\\ ={1\over 2}(\Ket0\Bra0+\Ket0\Bra1+\Ket1\Bra0+\Ket1\Bra1) +{1\over 2}(\Ket0\Bra0-\Ket0\Bra1-\Ket1\Bra0+\Ket1\Bra1) =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} .$
$\varpi_z(\theta)=I-P+P\cos\theta+G\sin\theta =\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} .$
Rotation by $\pi/2$ about the some axis $\phi$ is $R_\phi(\pi/2) =\varpi'_z(\pi/4) =\Rsr2\begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix} =ZH\sim\sqrt{Y}.$
$ZH=\Rsr2\begin{bmatrix}1&1\\-1&1\end{bmatrix}, ZHZH=\frac{1}{2}\begin{bmatrix}1&1\\-1&1\end{bmatrix}\begin{bmatrix}1&1\\-1&1\end{bmatrix}=\begin{bmatrix}0&1\\-1&0\end{bmatrix}\sim Y .$
<< Rotation - Bloch Sphere | Top | Rotation about Pauli Axes >> |